Explainable Clustering and Cluster-based Collaborative Filtering

Yuntao Du and Jianxun Lian
Microsoft Research Asia
2023/1/10
Outline

- Explainable Clustering
 - Why clustering?
 - Why explainability is matter for clustering algorithms?
 - How to achieve explainable clustering?

- Cluster-based Collaborative Filtering
 - Revisiting: collaborative filtering as an explicit/implicit clustering process
 - Naïve clustering approach for collaborative filtering
 - Our work: Towards Explainable Collaborative Filtering with Taste Clusters Learning
Part 1: Explainable Clustering
Clustering

Why clustering?

- One of the biggest topics in data science
- Clustering is to identify patterns or discover structural properties in a data set by quantizing the unlabeled points
 - Discover coherent groups among a supermarket’s customers
 - Find friends with similar habits / tastes

A classical problem, but still plenty need to be done…

- Classical clustering algorithms (k-means, DBSCAN, etc)
- Co-clustering / constrained clustering / multi-view clustering
- Deep clustering…
Explainable Clustering

- Explainability for clustering
 - Cluster process may be determined using all the features of the data or embeddings
 - Why they need to be in the same cluster?
 - Cluster results can be hard to explain
 - What’s the meaning of the cluster?
 - Quality is not the only objective in many fields like healthcare

- Goal
 - Provide provable insight into what parts of the data the cluster algorithm used to make its prediction
 - Achieve good balance between quality and explainability
Tree-based explainable clustering

- **k-means (reference clustering)**
 - Cluster goal: minimize *k*-means cost (NP-hard)

 \[
 \text{cost}(C) = \sum_{i=1}^{k} \sum_{x \in C^i} ||x - \text{mean}(C^i)||^2
 \]

- **Naive explanation**
 - Directly using cluster centers as explanation
 - Depends on all data points and all the features in a complicated way

Tree-based explainable clustering

Goal
- Explainable by design (self-explainable)
- Only look at some determined features to make clusters
 - Not depend on the cluster centers
- At each step, split only one feature with threshold
 - Leaves correspond to clusters (same as decision tree)

Tree-based explainable clustering

- General scheme
 - Find a clustering using some clustering algorithm
 - **Label** each example according to its cluster
 - Call a **supervised** algorithm that learns a decision tree

- ID3/C4.5 algorithm?
 - Split according to the information gain, no good

\[
Gain(D, a) = Ent(D) - \sum_{t=1}^{T} \frac{|D^t|}{|D|} Ent(D^t)
\]

Tree-based explainable clustering

- **Iterative Mistake Minimization (IMM)**
 - Mistake
 - A point x is a mistake for node u if x and its center $c(x)$ reached and then separated by u’s split
 - Each step we take the split (i.e., feature and threshold) that minimizes mistake

Tree-based explainable clustering

- **Iterative Mistake Minimization (IMM)**
 - As long as there is more than one center, find the split with minimal number of mistakes

Tree-based explainable clustering

(IMM Properties)

- Running time
 - $O(kdn\log(n))$
 - For each of the $k - 1$ inner nodes and each of the d features, we can find the split that minimizes the number of mistakes for this node and feature, in time $O(n\log(n))$
 - Comparable to standard k-means $O(tkdn)$

- Approximation factor

<table>
<thead>
<tr>
<th></th>
<th>k-medians</th>
<th>k-means</th>
</tr>
</thead>
<tbody>
<tr>
<td>$k = 2$</td>
<td>$k > 2$</td>
<td>$k = 2$</td>
</tr>
<tr>
<td>$k > 2$</td>
<td>$\Omega(\log k)$</td>
<td>$3(1 - \frac{1}{d})^2$</td>
</tr>
<tr>
<td>Lower</td>
<td>$2 - \frac{1}{d}$</td>
<td>$\Omega(\log k)$</td>
</tr>
<tr>
<td>Upper</td>
<td>2</td>
<td>$O(k)$</td>
</tr>
</tbody>
</table>

https://ucsdml.github.io/jekyll/update/2020/10/16/explain_2_means.html
Tree-based explainable clustering

- Improvements 1
 - What if we can have k' leaves ($k' > k$)?
 - Flexible trade-off between explainability & accuracy

Tree-based explainable clustering

- **Improvements 2**
 - Can we make full use of the reference clustering?
 - Select cuts based on centers, not data points
 - Only need to scan data once, nearly zero computational overhead

Algorithm 1: Explainable k-medians algorithm.

1. **Input:** A collection of k centers $\mathcal{U} = \{\mu^1, \mu^2, \ldots, \mu^k\} \subset \mathbb{R}^d$.
2. **Output:** A threshold tree with k leaves.
3. Leaves $\leftarrow \{\mathcal{U}\}$
4. while $|\text{Leaves}| < k$ do
 5. Sample (i, θ) uniformly at random from AllCuts.
 6. for each $B \in \text{Leaves}$ that are split by (i, θ) do
 7. Split B into B^- and B^+ and add them as left and right children of B.
 8. Update Leaves.
6. return the threshold tree defined by all cuts that separated some B.

Tree-based explainable clustering

- **Improvements 2**
 - The constructed decision tree is almost good enough

<table>
<thead>
<tr>
<th>Algorithms</th>
<th>k-medians</th>
<th>k-means</th>
<th>ℓ_p-norm</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(k)$</td>
<td>$O(k^2)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(d \log k)$</td>
<td>$O(kd \log k)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(\log^2 k)$</td>
<td>$O(k \log^2 k)$</td>
<td>$O(k^{p-1} \log^2 k)$</td>
<td></td>
</tr>
<tr>
<td>$O(\log k \log \log k)$</td>
<td>$O(k \log k \log \log k)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(\log k \log k)$</td>
<td>$O(k \log k)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$O(d \log^2 d)$</td>
<td>$O(k^{1-2/p} \text{polylog } k)$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lower bounds</th>
<th>$\Omega(\log k)$</th>
<th>$\Omega(\log k)$</th>
<th>$\Omega(k^{p-1})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\Omega(\log k)$</td>
<td>$\Omega(\log k)$</td>
<td>$\Omega(k)$</td>
<td>$\Omega(k^{p-1})$</td>
</tr>
<tr>
<td>$\Omega(k/\log k)$</td>
<td>$\Omega(k/\log k)$</td>
<td></td>
<td>$\Omega(k)$</td>
</tr>
<tr>
<td>$\Omega(\min(d, \log k))$</td>
<td>$\Omega(k)$</td>
<td>$\Omega(\min(d, \log k))$</td>
<td>$\Omega(k)$</td>
</tr>
<tr>
<td>$\Omega(k^{1-2/p} / \text{polylog } k)$</td>
<td></td>
<td>$\Omega(k^{1-2/p} / \text{polylog } k)$</td>
<td></td>
</tr>
</tbody>
</table>

This paper

Dasgupta et al. [6]

Laber and Murtinho [10]

Makarychev and Shan [12]

Esfandiari et al. [7]

Charikar and Hu [5]

Tree-based explainable clustering

- **Improvements 3**
 - Can perform clustering and decision tree training **holistically**?
 - Optimize the decision tree’s size (for explainability) and the distortion (for accuracy) together
 - Assume two groups of features: accuracy features and explainability features
 - Clustering with accuracy features, analyze with explainability features

Problem setting

➢ Define similarity functions as the combination of two measures

\[
\frac{(1 - \alpha) \times \text{a-distance}}{\max\{\text{All a-distances}\}} + \frac{\alpha \times \text{e-distance}}{\max\{\text{All e-distances}\}}
\]

➢ Can use any distance function (DTW) and clustering method (k-medoids)
➢ Agnostic to the decision tree training algorithm

Goal

\[
\min_{k, \alpha} D(k, \alpha) + \lambda N(k, \alpha)
\]

➢ \(D\): cluster distortion where a lower value is better as we would like the clusters to be coherent
➢ \(N\): number of decision tree nodes

Tree-based explainable clustering

- Monotonicity properties
 - As k increases, D is decreasing while N is increasing
 - As α increases, D is increasing while N is decreasing
 - Given $[k_1, k_2]$ and $[\alpha_1, \alpha_2]$, we have
 \[
 D(k_2, \alpha) + \lambda N(k, \alpha) \\
 \geq D(k_2, \alpha) + \lambda N(k_1, \alpha) \\
 \geq D(k_2, \alpha_1) + \lambda N(k_1, \alpha_2).
 \]
 - Get the upper bound and lower bound for $D(k, \alpha) + \lambda N(k, \alpha)$
 - Search for the desired parameters

Tree-based explainable clustering

- Search for the k and α parameters

Algorithm 1: XClusters algorithm

Input: training data S, maximum k value k_{max}

Parameters: k, α

Output: clusters and decision tree

1. $B \leftarrow [(1, 0), (k_{\text{max}}, 1)]$
2. Compute upper and lower bounds of B
3. $B^* \leftarrow B$
4. $Q.push(B)$
5. while $\neg Q.empty()$ do
6. $B \leftarrow Q.pop()$ // Block with lowest lower bound
7. if B's normalized k width is longer than the normalized α width then
8. \{ B_1, B_2 \} \leftarrow Split B by k into two blocks
9. else
10. \{ B_1, B_2 \} \leftarrow Split B by α into two blocks
11. Compute upper and lower bounds of B_1 and B_2
12. $Q.push(\{B_1, B_2\})$
13. if $\min_{B \in Q} B.upper() < B^*.upper()$ then
14. $B^* \leftarrow \arg \min_{B \in Q} B.upper()$
15. $Q \leftarrow Q \setminus \{B' \in Q | B'.lower() + \epsilon_b \geq B^*.upper()\}$
16. return Clusters and decision tree of $B^*.upper()$

Figure 2: The XClusters algorithm iteratively splits blocks while pruning blocks that are not worth exploring based on their lower and upper bounds.
Tree-based explainable clustering

- Experiments
 - Use three time series dataset: Credit, COVID-19, contracts
 - Accuracy features: time-series trends features
 - Explainability features: demographics information
 - Achieve good balance between accuracy and explainability, as well as efficiency

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Method</th>
<th>$D + \lambda N$</th>
<th>D</th>
<th>N</th>
<th>Runtime (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit Card</td>
<td>2-Step</td>
<td>0.981±0.000</td>
<td>0.206±0.000</td>
<td>0.775±0.000</td>
<td>0.011±0.001</td>
</tr>
<tr>
<td></td>
<td>GS</td>
<td>0.808±0.000</td>
<td>0.282±0.000</td>
<td>0.526±0.000</td>
<td>1.413±0.023</td>
</tr>
<tr>
<td></td>
<td>BO</td>
<td>0.851±0.028</td>
<td>0.238±0.030</td>
<td>0.613±0.045</td>
<td>1.416±0.158</td>
</tr>
<tr>
<td></td>
<td>XClusters</td>
<td>0.815±0.000</td>
<td>0.270±0.000</td>
<td>0.544±0.000</td>
<td>0.321±0.004</td>
</tr>
<tr>
<td>DS4C</td>
<td>2-Step</td>
<td>0.702±0.000</td>
<td>0.103±0.000</td>
<td>0.599±0.000</td>
<td>0.008±0.001</td>
</tr>
<tr>
<td></td>
<td>GS</td>
<td>0.406±0.000</td>
<td>0.127±0.000</td>
<td>0.279±0.000</td>
<td>1.345±0.012</td>
</tr>
<tr>
<td></td>
<td>BO</td>
<td>0.415±0.026</td>
<td>0.126±0.005</td>
<td>0.289±0.031</td>
<td>1.546±0.225</td>
</tr>
<tr>
<td></td>
<td>XClusters</td>
<td>0.466±0.000</td>
<td>0.128±0.000</td>
<td>0.338±0.000</td>
<td>0.308±0.004</td>
</tr>
<tr>
<td>Contracts</td>
<td>2-Step</td>
<td>1.018±0.000</td>
<td>0.216±0.000</td>
<td>0.802±0.000</td>
<td>0.011±0.000</td>
</tr>
<tr>
<td></td>
<td>GS</td>
<td>0.778±0.000</td>
<td>0.228±0.000</td>
<td>0.550±0.000</td>
<td>1.974±0.000</td>
</tr>
<tr>
<td></td>
<td>BO</td>
<td>0.827±0.032</td>
<td>0.301±0.057</td>
<td>0.526±0.046</td>
<td>1.550±0.240</td>
</tr>
<tr>
<td></td>
<td>XClusters</td>
<td>0.619±0.000</td>
<td>0.442±0.000</td>
<td>0.177±0.000</td>
<td>0.349±0.004</td>
</tr>
</tbody>
</table>

Tree-based explainable clustering

- Case study

Explainable clustering

Future direction

- Efficiency
 - Can we explore parallelizations for threshold tree construction?

- Generalization
 - Can we allow each node to be a hyperplane in a chosen number of dimensions instead of only splitting along one feature?

- Evaluation
 - How to evaluate the quality of explainability?

- Other explainable approaches
 - Can we go beyond the decision tree style for clustering explanation?
Part2: Cluster-based Collaborative Filtering
CF as a clustering process

- **Rationale behind collaborative filtering**
 - Finding like-minded users for a (group of) target user(s) to share preferences
 - Much like clustering!

- **Both memory-based CF (kNN, itemCF) and model-based CF (MF, NCF) perform clustering explicitly or implicitly**
 - Directly cluster similar users/items into groups, then perform kNN for recommendation
 - Learn to group similar users/items implicitly, then select most similar items for recommendation
CF as a clustering process

- Naïve approach
 - Clustering users with any cluster algorithm
 - Data smoothing with cluster-specific rating (optional)
 \[
 \hat{R}_u(t) = \overline{R_u} + \Delta R_{C_u}(t) \quad \Delta R_{C_u}(t) = \sum_{u \in C_u(t)} (R_{u'}(t) - \overline{R_u}) / |C_u(t)|
 \]
 - Neighbor pre-selection with clusters
 - Select most similar group for active user
 - Neighbor selection
 - Select most similar users from certain group
 - Prediction
 \[
 R_{u_a}(t) = \overline{R_{u_a}} + \sum_{i=1}^{K} w_{u_t} \cdot \text{sim}_{u_a,u} \cdot (R_{u}(t) - \overline{R_u}) \quad \text{sim}_{u_a,C} = \frac{\sum_{i \in T(u_a) \cap T(C)} \Delta R_C(t) \cdot (R_{u_a}(t) - \overline{R_u})}{\sqrt{\sum_{i \in T(u_a) \cap T(C)} (\Delta R_C(t))^2} \cdot \sqrt{\sum_{i \in T(u_a) \cap T(C)} (R_{u_a}(t) - \overline{R_u})^2}}.
 \]

- Is it necessary to explicitly perform clusters NOW?
 - Yes!

CF as a clustering process

- A toy movie recommendation scenario

<table>
<thead>
<tr>
<th></th>
<th>Andre</th>
<th>Star Wars</th>
<th>Batman</th>
<th>Rambo</th>
<th>Hiver</th>
<th>Whispers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellen</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td>y</td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jason</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
<td>y</td>
</tr>
</tbody>
</table>
CF as a clustering process

- **Rearrange the table…**

<table>
<thead>
<tr>
<th></th>
<th>Batman</th>
<th>Rambo</th>
<th>Andre</th>
<th>Hiver</th>
<th>Whispers</th>
<th>Star Wars</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyle</td>
<td>y</td>
<td></td>
<td></td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ellen</td>
<td>y</td>
<td>y</td>
<td></td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jason</td>
<td>y</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Dean</td>
<td>y</td>
<td>y</td>
<td></td>
<td></td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>
CF as a clustering process

- Rearrange the table…

<table>
<thead>
<tr>
<th>intellectual</th>
<th>action</th>
<th>foreign</th>
<th>classical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batman</td>
<td>Rambo</td>
<td>Andre</td>
</tr>
<tr>
<td>Lyle</td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Ellen</td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Jason</td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>fun</td>
<td>Fred</td>
<td></td>
<td>y</td>
</tr>
<tr>
<td></td>
<td>Dean</td>
<td></td>
<td>y</td>
</tr>
</tbody>
</table>
CF as a clustering process

- Rearrange the table...

<table>
<thead>
<tr>
<th></th>
<th>action</th>
<th>foreign</th>
<th>classical</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Batman</td>
<td>Rambo</td>
<td>Andre</td>
</tr>
<tr>
<td>Lyle</td>
<td></td>
<td></td>
<td>y</td>
</tr>
<tr>
<td>Ellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jason</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fred</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dean</td>
<td>y</td>
<td>y</td>
<td></td>
</tr>
</tbody>
</table>

- How to achieve this?
Towards Explainable Collaborative Filtering with Taste Clusters Learning

Yuntao Du1, Jianxun Lian2, Jing Yao2, Xiting Wang2, Mingqi Wu3, Lu Chen1, Yunjun Gao1 and Xing Xie2

1College of Computer Science, Zhejiang University, China
2Microsoft Research Asia, China
3Microsoft Gaming, USA

The WebCof 2023, Under Review
Motivations

- Explainable Recommendation
 - A growing need to ensure that the users understand and trust the system
 - Explanations serve as a bridge between recommender systems and users/developers
 - Increase user trust
 - Help users make better decisions (satisfactions)
 - Persuade users to try or buy an item (persuasiveness)
 - Assisting developers in model debugging and abnormal case studies

Explanations: why the items are recommended
Desirable Properties for Explainable CF

- **Flexibility**
 - The dimension of latent embeddings and the number of interpretable features/topics do not necessarily match ([1] fails on this)

- **Coherence**
 - A model’s interpretable modules and predictive modules should be aligned during predictive decision making rather than being decoupled as independent modules ([2] fails on this)

- **Self-explainable**
 - A model can provide interpretable clues that truly reveal the model’s running logic, instead of learning a post-hoc model for explanation ([3] fails on this)

Our Method

- Explainable Collaborative Filtering (ECF)
 - The first framework that satisfies all three properties
 - Core idea: mining various taste clusters, and map users/items to corresponding clusters
 - Taste clusters: A group of items which are not only similar in users’ latent interest space, but also explicitly share some common tags
Recommendation process of ECF

- **Item recommendation**
 - Prediction score of user u and item i can be calculated by multiplying their affiliations with taste clusters
 \[
 \hat{y}_{ui} = \text{sparse_dot}(a_u, x_i),
 \]

- **Personalized explanation**
 - For each prediction \hat{y}_{ui}, ECF is able to generate explanation by measuring the coherence between users’ and items’ taste cluster affiliations:
 \[
 C_{ui} = S(a_u) \cap S(x_i),
 \]
 - And importance score w^c_{ui} is introduced to quantify the contribution of each taste cluster in C_{ui}:
 \[
 w^c_{ui} = a_{uc} \times x_{ic}.
 \]
Learning Sparse Affiliation

- Directly learning the affiliation matrix from data is hard
 - Due to its sparsity nature for readability

- Initialize the users/items and taste clusters with embedding

\[\tilde{x}_{ic} = \cos(v_i, h_c), \]

\[m_{ic} = \begin{cases}
1 & \text{if } c \in \text{argTopm}(\tilde{x}_i) \\
0 & \text{otherwise}
\end{cases} \]

\[x_i = \sigma(\tilde{x}_i) \odot m_i, \]

- Learn it with reparameterized trick

\[m_{ic} \approx \hat{m}_{ic} = \frac{\exp(\cos(v_i, h_c)/T)}{\sum_c \exp(\cos(v_i, h_c)/T)}, \]

\[\hat{m}_{ic} = \hat{m}_{ic} + \text{detach_gradient}(m_{ic} - \hat{m}_{ic}), \]
Optimization of ECF

- **Reconstruction Loss**
 - Using user/item-cluster affiliations for prediction:
 \[L_{CS} = \sum_{(u,i,j) \in O} -\ln \sigma(\hat{y}_{ui} - \hat{y}_{uj}), \quad \hat{y}_{ui} = \text{sparse_dot}(a_u, x_i), \]

- **Tag Similarity Loss**
 - The items in the same taste clusters should share the similar tags
 - Using TF-IDF style to select informative tags for taste clusters:
 \[d_{ct} = \tilde{d}_{ct} \times \log\left(\frac{N}{f_t + \epsilon}\right), \quad \beta_{ct} = \frac{\exp(d_{ct}/\tau)}{\sum_{c_j \in T} \exp(d_{ct}/\tau)}, \]
 - Maximizing the likelihood of the probabilities of Top-\(P \) tags so that the taste clusters can be easily interpreted by those tags:
 \[L_{TS} = \sum_{c \in C} \sum_{t \in \text{argTopP}(\beta_c)} -\log \beta_{ct}, \]

- **Independence Loss**
 - Taste clusters should be different to present different user interest space:
 \[L_{IND} = \sum_{c \in C} -\log \frac{\exp(s(h_c, h_c))}{\sum_{c' \in C} \exp(s(h_c, h_{c'}))}, \]
Optimization of ECF

- **Learning taste cluster from three aspects**
 - No need to tune the weight for each loss
 \[\mathcal{L}_{TC} = \mathcal{L}_{CS} + \mathcal{L}_{TS} + \mathcal{L}_{IND}. \]

- **ECF loss**
 - Directly learning the taste cluster is hard to converge since the supervised signals are sparse
 - Adding auxiliary supervised signals from user-item predictions
 \[\mathcal{L}_{CF} = \sum_{(u,i,j) \in O} -\ln \sigma(e_u^T v_i - e_u^T v_j), \]
 - Embeddings can be learned from any embedding-based models (MF for simplicity)
 - Learn ECF with guidance from auxiliary collaborative signals
 \[\mathcal{L}_{ECF} = \mathcal{L}_{TC} + \lambda \mathcal{L}_{CF}, \]
Forest Mechanism

Observation

- Sparse affiliations between user/item and clusters would inevitably harm recommendation accuracy
- We do not know how many clusters needed to model users’ hidden interest space properly

Forest mechanism for ECF

- We randomly select $|C|$ items and use different random seeds for model training
- Train F different instances to form the final ECF model, and the final prediction is based on the summation of all M models
- Boost the performance and provide a comprehensive explanation for predictions
Metrics for Explainability

- **In-cluster item coverage**
 - The proportion of items in the taste cluster that the selected tags can cover
 \[
 \text{Cov.} = \frac{1}{Z} \sum_{c \in C} \sum_{i \in c} \frac{1 (T_i \cap T_c)}{|c|},
 \]

- **Tag utilization**
 - How many unique tags are used for interpreting taste clusters
 \[
 \text{Util.} = \frac{1}{|\mathcal{T}|} \bigcup_{c \in C} \mathcal{T}_c,
 \]

- **Silhouette**
 - Similarity difference between intra-cluster items and inter-cluster items
 \[
 \text{Sil.} = \frac{1}{|I|} \sum_{i \in I} \frac{b(i) - a(i)}{\max\{a(i), b(i)\}}.
 \]

- **Informativeness**
 - Distinctiveness of selected tags to represent the items in the taste cluster
 \[
 \text{Info.} = \frac{1}{|C|} \sum_{c_i \in C} \frac{|R(T_c) \cap c_i|}{|c|},
 \]
Metrics for Explainability (Cont.)

- Human evaluation
 - 30 volunteers evaluating the explainability of both taste clusters (Task 1) and user-item recommendations (Task 2)
 - Each volunteer is asked to look items’ profiles and user’s interactions
 - Then evaluate the results by comparison with baselines
 - Task 1
 - Rank the quality of generated clusters' tags
 - Task 2
 - Rank the quality of user-item explanation
Experimental Evaluation

- **Datasets**
 - Real-world datasets (Xbox) and public datasets (MovieLens and Last-FM)

<table>
<thead>
<tr>
<th>Dataset</th>
<th>#Users</th>
<th>#Items</th>
<th>#Interactions</th>
<th>#Tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xbox</td>
<td>465,258</td>
<td>330</td>
<td>6,240,251</td>
<td>115</td>
</tr>
<tr>
<td>MovieLens</td>
<td>6,033</td>
<td>3,378</td>
<td>836,434</td>
<td>18</td>
</tr>
<tr>
<td>Last-FM</td>
<td>53,486</td>
<td>2,062</td>
<td>2,228,949</td>
<td>54</td>
</tr>
</tbody>
</table>

- **Recommendation performance**
 - Achieve excellent accuracy performance while providing interpretability
 - Our method greatly outperforms the baseline in all metrics across all datasets

<table>
<thead>
<tr>
<th></th>
<th>R@5</th>
<th>R@10</th>
<th>N@5</th>
<th>N@10</th>
<th>R@5</th>
<th>R@10</th>
<th>N@5</th>
<th>N@10</th>
<th>R@5</th>
<th>R@10</th>
<th>N@5</th>
<th>N@10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xbox</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>0.2615</td>
<td>0.3686</td>
<td>0.2383</td>
<td>0.2824</td>
<td>0.0601</td>
<td>0.0975</td>
<td>0.2738</td>
<td>0.2511</td>
<td>0.0289</td>
<td>0.0446</td>
<td>0.0428</td>
<td>0.0443</td>
</tr>
<tr>
<td>NCF</td>
<td>0.2372</td>
<td>0.3433</td>
<td>0.2065</td>
<td>0.2503</td>
<td>0.0594</td>
<td>0.0985</td>
<td>0.2701</td>
<td>0.2517</td>
<td>0.0269</td>
<td>0.0456</td>
<td>0.0396</td>
<td>0.0383</td>
</tr>
<tr>
<td>CDAE</td>
<td>0.2604</td>
<td>0.3738</td>
<td>0.2346</td>
<td>0.2813</td>
<td>0.0609</td>
<td>0.0946</td>
<td>0.2671</td>
<td>0.2534</td>
<td>0.0286</td>
<td>0.0402</td>
<td>0.0431</td>
<td>0.0518</td>
</tr>
<tr>
<td>LightGCN</td>
<td>0.2684</td>
<td>0.3625</td>
<td>0.2382</td>
<td>0.2837</td>
<td>0.0699</td>
<td>0.1163</td>
<td>0.2979</td>
<td>0.2752</td>
<td>0.0398</td>
<td>0.0578</td>
<td>0.0605</td>
<td>0.0634</td>
</tr>
<tr>
<td>MovieLen</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>0.2647</td>
<td>0.3652</td>
<td>0.2368</td>
<td>0.2873</td>
<td>0.0657</td>
<td>0.1027</td>
<td>0.2866</td>
<td>0.2635</td>
<td>0.0319</td>
<td>0.0482</td>
<td>0.0471</td>
<td>0.0484</td>
</tr>
<tr>
<td>NCF</td>
<td>0.2601</td>
<td>0.3613</td>
<td>0.2355</td>
<td>0.2806</td>
<td>0.0603</td>
<td>0.0986</td>
<td>0.2719</td>
<td>0.2498</td>
<td>0.0295</td>
<td>0.0488</td>
<td>0.0456</td>
<td>0.0457</td>
</tr>
<tr>
<td>Last-FM</td>
<td></td>
</tr>
<tr>
<td>MF</td>
<td>0.2907</td>
<td>0.3983</td>
<td>0.2615</td>
<td>0.3159</td>
<td>0.0787</td>
<td>0.1276</td>
<td>0.3122</td>
<td>0.2911</td>
<td>0.0374</td>
<td>0.0548</td>
<td>0.0562</td>
<td>0.0594</td>
</tr>
<tr>
<td>ECF single</td>
<td>0.1714</td>
<td>0.2763</td>
<td>0.1423</td>
<td>0.1854</td>
<td>0.0352</td>
<td>0.0608</td>
<td>0.1584</td>
<td>0.1505</td>
<td>0.0205</td>
<td>0.0315</td>
<td>0.0339</td>
<td>0.0345</td>
</tr>
<tr>
<td>ECF</td>
<td>0.2970</td>
<td>0.4299</td>
<td>0.2644</td>
<td>0.3193</td>
<td>0.0788</td>
<td>0.1325</td>
<td>0.3183</td>
<td>0.2952</td>
<td>0.0455</td>
<td>0.0635</td>
<td>0.0782</td>
<td>0.0749</td>
</tr>
</tbody>
</table>
Experimental Evaluation

- **Explainability**
 - **K-means**: similarity-oriented method which utilizes item embedding from MF to perform K-means algorithm
 - **TagCluster**: tag-oriented method which collects items with the same tags
 - **ECF** takes all aspects into consideration so that it can avoid obvious shortcomings on a certain metric

<table>
<thead>
<tr>
<th>Method</th>
<th>Cov.</th>
<th>Util.</th>
<th>Sil.</th>
<th>Info.</th>
<th>Overall</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xbox</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ECF</td>
<td>0.8002</td>
<td>0.7052</td>
<td>0.2604</td>
<td>0.3162</td>
<td>1.7463</td>
</tr>
<tr>
<td>TagCluster</td>
<td>0.9950</td>
<td>0.2878</td>
<td>-0.1788</td>
<td>0.1579</td>
<td>0.9262</td>
</tr>
<tr>
<td>K-means</td>
<td>0.5710</td>
<td>0.3739</td>
<td>0.4286</td>
<td>0.0185</td>
<td>1.0563</td>
</tr>
<tr>
<td>Random</td>
<td>0.5396</td>
<td>0.1450</td>
<td>-0.3614</td>
<td>0.0125</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>RankOfTask1</th>
<th>RankOfTask2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ECF</td>
<td>1.73</td>
<td>1.3</td>
</tr>
<tr>
<td>TagCluster</td>
<td>2</td>
<td>2.5</td>
</tr>
<tr>
<td>K-means</td>
<td>2.73</td>
<td>2.23</td>
</tr>
<tr>
<td>Random</td>
<td>3.63</td>
<td>3.93</td>
</tr>
</tbody>
</table>
Experimental Evaluation

- Ablation Study
 - Impact of top-\(m\) and top-\(n\) selection

![Graphs showing recall@20 for Last-FM and Xbox datasets with varying number of affiliations.](image)
Experimental Evaluation

- Ablation Study
 - Impact of the auxiliary collaborative signals λ

![Graphs showing performance metrics vs. λ for different datasets](image-url)
Experimental Evaluation

- Ablation Study
 - Impact of the forest mechanism

![Graphs showing performance metrics](a) Xbox dataset
(b) MovieLens dataset
Case Study: Last-FM

- **Learned Taste Clusters**
 - Can be used to correct tags
 - Tags for *Bubbly*: `female_vocalists|pop|folk|acoustic|love`
 - Missing tag `singer_songwriter`
 - Colbie Caillat is also a songwriter who wrote the song
Case Study: Last-FM

- Explanations of the recommendation
 - The weights of affiliation matrix indicate the relatedness between users/items with taste clusters
 - Find the explanation paths for prediction score
 - \(i_{71} \rightarrow c_1 \rightarrow i_{77414} \) and \(i_{71} \rightarrow c_4 \rightarrow i_{77414} \)
Case Study: Xbox Game Pass

- Real-world dataset with small items/games (~400)

- Recommendation accuracy

<table>
<thead>
<tr>
<th>model</th>
<th>Recall@5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random</td>
<td>0.02</td>
</tr>
<tr>
<td>MF</td>
<td>0.18</td>
</tr>
<tr>
<td>ECF<sub>single</sub></td>
<td>0.14</td>
</tr>
<tr>
<td>ECF</td>
<td>0.24</td>
</tr>
</tbody>
</table>
Case Study: Xbox Game Pass

- Real-world dataset with small items/games (~400)

- Learned Taste Clusters

<table>
<thead>
<tr>
<th>ClusterID</th>
<th>Tags</th>
<th>Hard Count</th>
<th>HalfHard Count</th>
<th>Count</th>
<th>In_sim</th>
<th>Cross_sim</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>Difficulty_Low</td>
<td>LearningCurve_Low</td>
<td>GoodForKids</td>
<td>MoodsMotivations_Cozy</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>
Case Study: Xbox Game Pass

- **Affiliated games**

<table>
<thead>
<tr>
<th>ClusterID, TitleID, Game, Hard</th>
<th>Value 1</th>
<th>Value 2</th>
<th>Value 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>36, 1970834532, RAGE 2 (PC), True</td>
<td>36, 1891258006, The Bard's Tale ARPG : Remastered and Resnarkled, False</td>
<td>36, 2102421406, Day of the Tentacle Remastered, False</td>
<td>36, 2096242259, ANVIL : Vault Breaker (Game Preview), False</td>
</tr>
<tr>
<td>36, 2055724194, SHENZHEN I/O, False</td>
<td>36, 1696012554, Goat Simulator Windows 10, False</td>
<td>36, 1621285366, DOOM (1993), True</td>
<td>36, 1843641391, Quake, True</td>
</tr>
<tr>
<td>36, 2090892978, Farming Simulator 22, False</td>
<td>36, 1805483741, Dishonored®: Death of the Outsider™ (PC), False</td>
<td>36, 2078926688, DOOM II (Classic), True</td>
<td>36, 167705209, Wolfenstein: The New Order (PC), False</td>
</tr>
<tr>
<td>36, 682562723, Halo: Spartan Assault, False</td>
<td>36, 1822205071, The Anacrusis (Game Preview), False</td>
<td>36, 1909396590, Wolfenstein: The Old Blood (PC), False</td>
<td></td>
</tr>
</tbody>
</table>
More Applications of ECF

- Taste Cluster Recommendation
 - A new but ubiquitous recommendation task like playlist recommendation in Spotify or gamelist recommendation in Xbox

- User Profiling
 - User-cluster affiliations discovered by ECF can also be used as user profiles directly
 - Can be used for user-level predictive tasks, ad audience targeting and look-alike audience extension, etc.

- Flexibility
 - Applied with other popular embedding-based methods like LightGCN
Future direction

➢ Optimization
 - How to optimize taste clusters in an elegant way?

➢ Quality
 - How to tag taste clusters properly and improve the quality?

➢ Scalability
 - How to apply ECF to scenarios with millions of users and items?

➢ Generalization
 - Can we go beyond item tags? Knowledge graph, reviews…
Thank you!

Questions?
Yuntao Du
ytdu@zju.edu.cn